
1

Making Web3 Space Safer for Everyone

StableComp
Security Assessment

Published on : 30 Mar. 2023
Version v1.1

COPYRIGHT 2023. KALOS. all rights reservedS

2

Security Report Published by KALOS
v1.1 30 Mar. 2023

Auditor : Jade

Found issues

Severity of Issues Findings Resolved Acknowledged Comment

Critical 1 1 - -

High 3 3 - -

Medium 1 1 - -

Low 1 1 - -

Tips - - - -

COPYRIGHT 2023. KALOS. all rights reserved

3

TABLE OF CONTENTS
TABLE OF CONTENTS
ABOUT US
Executive Summary
OVERVIEW

Protocol overview
Scope
Access Controls

FINDINGS
1. minimum output parameter does not exist in UniswapV2's
swapExactTokensForTokens function

Issue
Recommendation
Fix Comment

2. First Depositor Front-Running
Issue
Recommendation
Fix Comment

3. The veScomp contract can freeze any arbitrary user's Scomp tokens by
mismanaging allowances

Issue
Recommendation
Fix Comment

4. Potential Calculation Issue with Rewards in MasterchefScomp Contract
after endBlock

Issue
Recommendation
Fix Comment

5. Potential Issue with Reward Token Management in MasterchefScomp
Contract

Issue
Recommendation
Fix Comment

COPYRIGHT 2023. KALOS. all rights reserved

4

6. minimum output parameter does not exist in Curve
_add_liquidity_single_coin function

Issue
Recommendation
Fix Comment

DISCLAIMER
Appendix. A

Severity Level
Difficulty Level
Vulnerability Category

COPYRIGHT 2023. KALOS. all rights reserved

5

ABOUT US

Making Web3 Space Safer for Everyone

KALOS is a flagship service of HAECHI LABS, the leader of the global blockchain industry.
We bring together the best Web2 and Web3 experts. Security Researchers with expertise
in cryptography, leaders of the global best hacker team, and blockchain/smart contract
experts are responsible for securing your Web3 service.

Having secured $60B crypto assets on over 400 main-nets, Defi protocols, NFT services,
P2E, and Bridges, KALOS is the only blockchain technology company selected for the
Samsung Electronics Startup Incubation Program in recognition of our expertise. We have
also received technology grants from the Ethereum Foundation and Ethereum Community
Fund.

Inquiries: audit@kalos.xyz
Website: https://kalos.xyz

COPYRIGHT 2023. KALOS. all rights reserved

mailto:audit@kalos.xyz
https://kalos.xyz

6

Executive Summary

Purpose of this report

This report was prepared to audit the security of the project developed by the
StableComp team. KALOS conducted the audit focusing on whether the system created
by the StableComp team is soundly implemented and designed as specified in the
published materials, in addition to the safety and security of the project.

In detail, we have focused on the following
● Denial of Service
● Access Control of Various Storage Variables
● Access Control of Important Functions
● Freezing of User Assets
● Theft of User Assets
● Manipulation of Yield Calculation
● Unhandled Exceptions

Codebase Submitted for the Audit

The codes used in this Audit can be found on GitHub
(https://github.com/stablecomp/stablecomp-contracts).

The commits of the code used for this Audit ard
“f5bb17e595a1320f3f107b039653f6d384c5ed45”,

Audit Timeline

Date Event

2023/02/13 Audit Initiation (StableComp)

2023/03/13 Delivery of v1.0 report.

2023/03/30 Delivery of v1.1 report

COPYRIGHT 2023. KALOS. all rights reserved

7

Findings

KALOS found 1 Critical, 3 High, 1 medium and 1 Low severity issues.

Severity Issue Status

Critical First Depositor Front-Running (Fixed - v1.1)

High minimum output parameter does not exist in UniswapV2's
swapExactTokensForTokens function (Fixed - v1.1)

High The veScomp contract can freeze any arbitrary user's Scomp
tokens by mismanaging allowances (Fixed - v1.1)

High minimum output parameter does not exist in Curve
_add_liquidity_single_coin function (Fixed - v1.1)

Medium Potential Calculation Issue with Rewards in MasterchefScomp
Contract after endBlock (Fixed - v1.1)

Low Potential Issue with Reward Token Management in
MasterchefScomp Contract (Fixed - v1.1)

Remarks

The KALOS team has not received information about the contract used as a converter in
the SCompController contract, and the contract used as a converter is not within the
scope of this audit. We have also excluded Farm.sol from the Audit Scope as the project
team has confirmed that it will not be used.

COPYRIGHT 2023. KALOS. all rights reserved

8

OVERVIEW
Protocol overview

• SComp
SComp Token is the native token of StableComp with a limited supply of 200 million
tokens. It supports all the basic functions defined in ERC20, such as transfers.

• veScomp
The veScomp token is issued on the StableComp platform and can be obtained by locking
up Scomp for a certain period of time. By holding veScomp tokens, users can receive more
rewards from the MasterchefScomp contract within the StableComp platform.

• OneClick
The OneClick Contract is a contract that enables token swapping and liquidity providing to
be processed at a single endpoint in conjunction with the SCompVault Contract.

• FeeDistribution
The FeeDistribution contract is an Ethereum smart contract that distributes fees to users
who lock their SComp tokens in the veScomp, based on a linear approximation of the
amount of veScomp locked over time. Users can claim their share of the fees by calling the
"claim" function or the "claim_many" function for multiple claims.

• SurplusConverterUniV2Sushi
Surplus Converter is a smart contract that converts the surplus of the Stablecomp protocol
into a specific token via Uniswap or Sushiswap, providing the best price by comparing the
prices of the two DEXs. It periodically executes and purchases a specific token using
surplus funds from the Stablecomp protocol to transfer to the FeeDistributor or other
Surplus Converter. It inherits the BaseSurplusConverter smart contract and is used in
conjunction with the FeeDistributor. The Surplus Converter only works if the user has the
Whitelisted role.

• SCompStrategyV1.0

COPYRIGHT 2023. KALOS. all rights reserved

9

The SCompStrategyV1 contract allows yield farming by depositing funds into Convex
Finance's staking pools and depositing and staking the underlying assets into the
appropriate vault. It includes functions for realizing gains and withdrawing funds, as well
as several internal functions for interacting with assets, handling fees, and setting
important variables.

• SCompController
The SCompController contract provides functionality to deposit sCOMP tokens into the
Stablecomp protocol and generate revenue using the deposited tokens. It interacts with
the SCompVault and ScompStrategy contracts to manage assets, deposit tokens held by
SCompVault into SCompStrategy, generate revenue, and transfer back to SCompVault.

• SCompVault
SCompVault is a smart contract that enables users to deposit sCOMP tokens into the
Stablecomp protocol and generate profits using the deposited tokens. It also includes a
function to impose fees on deposits. This smart contract is implemented by inheriting the
ERC20 token.

COPYRIGHT 2023. KALOS. all rights reserved

10

Scope
├── SCompController.sol
├── SCompVault.sol
├── abstract
│ └── BaseStrategy.sol
├── farmBooster
│ ├──MasterchefScomp.sol
│ ├── StableCompToken.sol
│ └── veScomp.vy
├── interface
│ ├── IBEP20.sol
│ ├── IBaseRewardsPool.sol
│ ├── IBoostContract.sol
│ ├── IBooster.sol
│ ├── ICakePool.sol
│ ├── IController.sol
│ ├── IConverter.sol
│ ├── ICrvDepositor.sol
│ ├── ICurveFi.sol
│ ├── ICurveGauge.sol
│ ├── ICurvePool.sol
│ ├── ICurveRegistry.sol
│ ├── ICurveRegistryAddressProvider.sol
│ ├── ICvxRewardsPool.sol
│ ├── IERC20.sol
│ ├── IFeeDistributor.sol
│ ├── IMasterChef.sol
│ ├── IMasterChefV2.sol
│ ├── IOneSplitAudit.sol
│ ├── ISCompVault.sol
│ ├── ISettV4.sol
│ ├── IStaker.sol
│ ├── IStrategy.sol
│ ├── IUniswapRouter.sol
│ ├── IUniswapRouterV2.sol
│ ├── IUniswapV2Factory.sol
│ ├── IVCake.sol
│ └── IVotingEscrow.sol
├── libraries
│ └── IterateMapping.sol
├──manageFee
│ ├── BaseSurplusConverter.sol
│ ├── FeeDistribution.vy

COPYRIGHT 2023. KALOS. all rights reserved

11

│ └── SurplusConverterUniV2Sushi.sol
├── oneClick
│ └── OneClick.sol
├── strategies
│ └── SCompStrategyV1.0.sol
└── utility
├── BaseSwapper.sol
├── CurveSwapper.sol
├── Faucet.sol
├── GenericERC20.sol
├── SCompAccessControl.sol
├── SCompTimeLockController.sol
├── SafeBEP20.sol
├── TokenSwapPathRegistry.sol
└── UniswapSwapper.sol

COPYRIGHT 2023. KALOS. all rights reserved

12

Access Controls

Access control in contracts is achieved using modifiers and inline require statements.
The access control of Stablecomp refers to the following variables.
❖ strategist
❖ governance
❖ controller
❖ owner

strategist : The address designated as a strategist can perform the following functions
● SCompController.sol#setVault(address, address)
● SCompController.sol#setStrategy(address, address)
● SCompController.sol#setConverter(address, address, address)
● SCompController.sol#withdrawAll(address)
● SCompController.sol#inCaseTokensGetStuck(address, uint256)
● SCompController.sol#inCaseStrategyTokenGetStuck(address, address)

governance : The address designated as a governance can perform the following
functions

● BaseStrategy.sol#pause()
● SCompController.sol#approveStrategy(address, address)
● SCompController.sol#revokeStrategy(address, address)
● SCompController.sol#setRewards(address)
● SCompController.sol#setVault(address, address)
● SCompController.sol#setStrategy(address, address)
● SCompController.sol#setConverter(address, address, address)
● SCompController.sol#withdrawAll(address)
● SCompController.sol#inCaseTokensGetStuck(address, uint256)
● SCompController.sol#inCaseStrategyTokenGetStuck(address, address)
● BaseStrategy.sol#setController(address)
● BaseStrategy.sol#setWithdrawalMaxDeviationThreshold(uint256)
● BaseStrategy.sol#unpause()
● SCompStrategyV1.0.sol#setPid(uint256)
● SCompStrategyV1.0.sol#setCurvePoolSwap(address)
● SCompStrategyV1.0.sol#setTokenCompound(address, uint256)
● SCompAccessControl.sol#setStrategist(address)
● SCompAccessControl.sol#setGovernance(address)
● SCompAccessControl.sol#setTimeLockController(address)
● BaseStrategy.sol#deposit()

COPYRIGHT 2023. KALOS. all rights reserved

13

controller : The address designated as a controller can perform the following functions
● BaseStrategy.sol#withdrawAll()
● BaseStrategy.sol#withdraw(uint256)
● BaseStrategy.sol#withdrawOther(address)
● SCompVault.sol#harvest(address, uint256)
● BaseStrategy.sol#deposit()

timeLockController : The address designated as a owner can perform the following
functions

● BaseStrategy.sol#setWithdrawalFee(uint256)
● BaseStrategy.sol#setPerformanceFeeStrategist(uint256)
● BaseStrategy.sol#setPerformanceFeeGovernance(uint256)
● OneClick.sol#setOneclickFee(address, uint256)

owner : The address designated as a owner can perform the following functions
● MasterchefScomp.sol#add(uint256, address, bool)
● MasterchefScomp.sol#set(uint256, uint256, bool)
● OneClick.sol#setTimeLockController(address)
● OneClick.sol#recoverTokens(address, uint256)

COPYRIGHT 2023. KALOS. all rights reserved

14

FINDINGS
1. minimum output parameter does not exist in
UniswapV2's swapExactTokensForTokens function

ID: StableComp-01 Severity: High
Type: Logic Error Difficulty: Medium
File: contracts/utility/UniswapSwapper.sol

Issue
During the process of reinvesting profits received, some profits may be lost.

The code below is problematic.

function harvest() external whenNotPaused returns (uint256) {

uint256 idleWant = IERC20(want).balanceOf(address(this));

uint256 totalWantBefore = balanceOf();

// 1. Withdraw accrued rewards from staking positions (claim unclaimed positions as

well)

baseRewardsPool.getReward(address(this), true);

// 3. Sell 100% of accured rewards for underlying

uint crvToSell = crvToken.balanceOf(address(this));

if(crvToSell > 0) {

uint fee = takeFee(crv, crvToSell);

crvToSell = crvToSell.sub(fee);

_swapExactTokensForTokens(

sushiswap,

crv,

crvToSell,

getTokenSwapPath(crv, tokenCompoundAddress)

);

}

uint cvxToSell = cvxToken.balanceOf(address(this));

if(cvxToSell > 0) {

uint fee = takeFee(cvx, cvxToSell);

cvxToSell = cvxToSell.sub(fee);

_swapExactTokensForTokens(

sushiswap,

cvx,

cvxToSell,

getTokenSwapPath(cvx, tokenCompoundAddress)

);

COPYRIGHT 2023. KALOS. all rights reserved

15

}

...

}

...

function _swapExactTokensForTokens(

address router,

address startToken,

uint256 balance,

address[] memory path

) internal {

_safeApproveHelper(startToken, router, balance);

IUniswapRouterV2(router).swapExactTokensForTokens(

balance,

0, // This code becomes vulnerable to sandwich trading attacks by passing 0 as a

parameter

path,

address(this),

block.timestamp

);

}

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/ut

ility/UniswapSwapper.sol

If the minimum output is set, it is safe from sandwich trading via MEV. However, since the
minimum output is not set, depending on the liquidity of the Dex pool, more than 90% of the
tokens being swapped may be lost.

Recommendation

We recommend calculating the minimum output off-chain, passing it as a parameter to the
harvest and _swapExactTokensForTokens functions, and ultimately setting the parameter
related to minimum output of swapExactTokensForTokens.

Fix Comment

Initially, we recommended the Stablecomp Team to use the Chainlink Oracle to set a minimum
output when the harvest function is executed. However, there was no Chainlink Price Feed
available for the following stablecoins:

● agEur (0x1a7e4e63778B4f12a199C062f3eFdD288afCBce8)

● dola (0x865377367054516e17014CcdED1e7d814EDC9ce4)

COPYRIGHT 2023. KALOS. all rights reserved

16

● EUROC (0x1aBaEA1f7C830bD89Acc67eC4af516284b1bC33c)

● EURS (0xdB25f211AB05b1c97D595516F45794528a807ad8)

● ibEur (0x96E61422b6A9bA0e068B6c5ADd4fFaBC6a4aae27)

● sEur (0xD71eCFF9342A5Ced620049e616c5035F1dB98620)

● 3crv (0x6c3F90f043a72FA612cbac8115EE7e52BDe6E490)

● usdd (0x0C10bF8FcB7Bf5412187A595ab97a3609160b5c6)

As an alternative, we suggested the administrator investigate prices off-chain and then input
the price data on-chain, using that price as the basis for calculating the minimum output.

COPYRIGHT 2023. KALOS. all rights reserved

17

2. First Depositor Front-Running

ID: StableComp-02 Severity: Critical
Type: Logic Error Difficulty: Medium
File: contracts/SCompVault.sol

Issue
The first depositor of the SCompVault contract may lose most of the assets they deposit due to
malicious MEV attackers.

The following code is the code that executes when a user deposits and withdraws funds in the
SCompVault contract.

function balance() public view returns (uint256) {

return

token.balanceOf(address(this)).add(IController(controller).balanceOf(address(token)));

}

...

function deposit(uint256 _amount) public returns(uint) {

uint256 _pool = balance();

// deposit fee

if(depositFee > 0) {

uint256 amountFee =

_amount.mul(depositFee).div(

MAX_FEE

);

token.safeTransferFrom(msg.sender, treasuryFee, amountFee);

_amount = _amount - amountFee;

}

uint256 _before = token.balanceOf(address(this));

token.safeTransferFrom(msg.sender, address(this), _amount);

uint256 _after = token.balanceOf(address(this));

_amount = _after.sub(_before); // Additional check for deflationary tokens

uint256 shares = 0;

if (totalSupply() == 0) {

shares = _amount;

} else {

shares = (_amount.mul(totalSupply())).div(_pool);

}

_mint(msg.sender, shares);

emit Deposit(msg.sender, shares, block.timestamp);

return shares;

}

...

function withdraw(uint256 _shares) public returns(uint) {

COPYRIGHT 2023. KALOS. all rights reserved

18

uint256 r = (balance().mul(_shares)).div(totalSupply());

_burn(msg.sender, _shares);

// Check balance

uint256 b = token.balanceOf(address(this));

if (b < r) {

uint256 _withdraw = r.sub(b);

IController(controller).withdraw(address(token), _withdraw);

uint256 _after = token.balanceOf(address(this));

uint256 _diff = _after.sub(b);

if (_diff < _withdraw) {

r = b.add(_diff);

}

}

token.safeTransfer(msg.sender, r);

emit Withdraw(msg.sender, r, block.timestamp);

return r;

}

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/S

CompVault.sol

Some MEV-unfriendly chains (such as Arbitrum) inherently block this vulnerability. However,
MEV is allowed on the Ethereum Mainnet where StableComp contracts are deployed, and this
vulnerability may occur.

In Solidity, integer division sometimes produces unintended results because it does not
express decimal points. Let's assume that someone makes the first deposit to the pool.

In this code, the Attack Scenario consists of the below steps.

1. The victim deposits token that amount is 500000e18
2. attacker sees the victim's pending transaction in mempool.
3. The attacker deposits token that amount is 1 wei using deposit function
4. The attacker transfers 200000e18 tokens to the pool contract before the victim's

pending transaction is executed.
5. the victim's pending transaction is executed.
6. The attacker withdraws the asset token more than the attacker's first deposit.

COPYRIGHT 2023. KALOS. all rights reserved

19

Recommendation

We recommend the following updates.

● Need to enforce a minimum deposit that can not be withdrawn.
● mint some of the initial amount to the zero address. Since most legit first depositors

will mint thousands of shares, this will not be a big cost for them.

The above recommendation increases the cost for attack greatly.

Uniswap V2 also uses the above recommendation. Refer to the codes below.
https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/con
tracts/UniswapV2Pair.sol#L109-L131

Fix Comment

Enforced a minimum deposit requirement that cannot be withdrawn, following the
recommendation to mint some of the initial amount to the zero address.

This approach was deemed reasonable since most legitimate first depositors will mint
thousands of shares, making it a negligible cost for them.

Confirmed successful implementation of the suggestion.

COPYRIGHT 2023. KALOS. all rights reserved

https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/contracts/UniswapV2Pair.sol#L109-L131
https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/contracts/UniswapV2Pair.sol#L109-L131

20

3. The veScomp contract can freeze any arbitrary user's
Scomp tokens by mismanaging allowances

ID: StableComp-03 Severity: High
Type: Logic Error Difficulty: Low
File: contracts/farmBooster/veScomp.vy

Issue
If other contracts or EOAs referring to the veScomp contract maintain allowances of Scomp
tokens greater than zero, the veScomp contract can impose a lock-up for up to two years on
the user without their consent.

The following code retrieves Scomp tokens from a specific EOA or contract by a third party and
issues veTokens to the owner of Scomp tokens.

@external

@nonreentrant('lock')

def deposit_for(_addr: address, _value: uint256):

"""

@notice Deposit `_value` tokens for `_addr` and add to the lock

@dev Anyone (even a smart contract) can deposit for someone else, but

cannot extend their locktime and deposit for a brand new user

@param _addr User's wallet address

@param _value Amount to add to user's lock

"""

_locked: LockedBalance = self.locked[_addr]

assert _value > 0 # dev: need non-zero value

assert _locked.amount > 0, "No existing lock found"

assert _locked.end > block.timestamp, "Cannot add to expired lock. Withdraw"

self._deposit_for(_addr, _value, 0, self.locked[_addr], DEPOSIT_FOR_TYPE)

...

@internal

def _deposit_for(_addr: address, _value: uint256, unlock_time: uint256, locked_balance:

LockedBalance, type: int128):

"""

@notice Deposit and lock tokens for a user

@param _addr User's wallet address

@param _value Amount to deposit

@param unlock_time New time when to unlock the tokens, or 0 if unchanged

@param locked_balance Previous locked amount / timestamp

COPYRIGHT 2023. KALOS. all rights reserved

21

"""

_locked: LockedBalance = locked_balance

supply_before: uint256 = self.supply

self.supply = supply_before + _value

old_locked: LockedBalance = _locked

Adding to existing lock, or if a lock is expired - creating a new one

_locked.amount += convert(_value, int128)

if unlock_time != 0:

_locked.end = unlock_time

self.locked[_addr] = _locked

Possibilities:

Both old_locked.end could be current or expired (>/< block.timestamp)

value == 0 (extend lock) or value > 0 (add to lock or extend lock)

_locked.end > block.timestamp (always)

self._checkpoint(_addr, old_locked, _locked)

if _value != 0:

assert ERC20(self.token).transferFrom(_addr, self, _value)

log Deposit(_addr, _value, _locked.end, type, block.timestamp)

log Supply(supply_before, supply_before + _value)

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/fa

rmBooster/veScomp.vy

Often, there are cases where the allowance is set to a value greater than zero instead of being
kept at zero.

In such cases, a user may suffer losses if their assets in a specific EOA or contract are frozen for
up to two years by malicious users.

Recommendation

We recommend removing the deposit_for function.

Fix Comment

Implemented the recommendation to remove the deposit_for function in order to prevent
asset freezing.

After careful consideration, this approach was deemed necessary to ensure the security and
reliability of the platform.

Confirmed successful removal of the function in accordance with the suggestion.

COPYRIGHT 2023. KALOS. all rights reserved

22

4. Potential Calculation Issue with Rewards in
MasterchefScomp Contract after endBlock

ID: StableComp-04 Severity: Medium
Type: Logic Error Difficulty: Low
File: contracts/farmBooster/MasterchefScomp.sol

Issue
Users may receive additional rewards beyond the predetermined rewards, which may result in
losses for the project team.

The following code contains a potential issue where users may receive additional rewards after
endBlock.

function updatePool(uint256 _pid) public returns (PoolInfo memory pool) {

pool = poolInfo[_pid];

uint256 lastBlock = block.number < endBlock ? block.number : endBlock;

if (lastBlock > pool.lastRewardBlock) {

uint256 lpSupply = pool.totalBoostedShare;

if (lpSupply > 0 && totalAllocPoint > 0) {

uint256 multiplier = block.number.sub(pool.lastRewardBlock);

uint256 tokenReward =

multiplier.mul(tokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

pool.accTokenPerShare =

pool.accTokenPerShare.add((tokenReward.mul(ACC_TOKEN_PRECISION).div(lpSupply)));

}

pool.lastRewardBlock = block.number;

poolInfo[_pid] = pool;

emit UpdatePool(_pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare);

}

}

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/fa

rmBooster/MasterchefScomp.sol

The multiplier calculation includes blocks beyond endBlock because the
pool.lastRewardBlock is subtracted from block.number, when lastBlock should be used
instead of block.number.

COPYRIGHT 2023. KALOS. all rights reserved

23

Recommendation

We recommend subtracting pool.lastRewardBlock from lastBlock instead of subtracting it
from block.number when calculating the multiplier.
function updatePool(uint256 _pid) public returns (PoolInfo memory pool) {

pool = poolInfo[_pid];

uint256 lastBlock = block.number < endBlock ? block.number : endBlock;

if (lastBlock > pool.lastRewardBlock) {

uint256 lpSupply = pool.totalBoostedShare;

if (lpSupply > 0 && totalAllocPoint > 0) {

uint256 multiplier = lastBlock.sub(pool.lastRewardBlock);

uint256 tokenReward =

multiplier.mul(tokenPerBlock).mul(pool.allocPoint).div(totalAllocPoint);

pool.accTokenPerShare =

pool.accTokenPerShare.add((tokenReward.mul(ACC_TOKEN_PRECISION).div(lpSupply)));

}

pool.lastRewardBlock = block.number;

poolInfo[_pid] = pool;

emit UpdatePool(_pid, pool.lastRewardBlock, lpSupply, pool.accTokenPerShare);

}

}

Fix Comment

Applied the suggestion to subtract pool.lastRewardBlock from lastBlock instead of subtracting
it from block.number when calculating the multiplier in the updatePool function.

This change was deemed necessary to improve accuracy in the calculation and ensure
consistency with the intended logic of the code.

Confirmed successful implementation of the recommendation.

COPYRIGHT 2023. KALOS. all rights reserved

24

5. Potential Issue with Reward Token Management in
MasterchefScomp Contract

ID: StableComp-05 Severity: Tips
Type: N/A Difficulty: N/A
File: contracts/farmBooster/MasterchefScomp.sol

Issue
Users may receive less or no rewards in specific situations.

The following code is a function that transfers rewards to users.

function settlePendingToken(

address _user,

uint256 _pid,

uint256 _boostMultiplier

) internal {

UserInfo memory user = userInfo[_pid][_user];

uint256 boostedAmount = user.amount.mul(_boostMultiplier).div(BOOST_PRECISION);

uint256 accToken =

boostedAmount.mul(poolInfo[_pid].accTokenPerShare).div(ACC_TOKEN_PRECISION);

uint256 pending = accToken.sub(user.rewardDebt);

// SafeTransfer TOKEN

_safeTransfer(_user, pending);

}

/// @notice Safe Transfer TOKEN.

/// @param _to The TOKEN receiver address.

/// @param _amount transfer TOKEN amounts.

function _safeTransfer(address _to, uint256 _amount) internal {

if (_amount > 0) {

uint256 balance = TOKEN.balanceOf(address(this));

if (balance < _amount) {

_amount = balance;

}

TOKEN.safeTransfer(_to, _amount);

}

}

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/fa

rmBooster/MasterchefScomp.sol

If the amount in the _safeTransfer function is greater than the amount of tokens owned by
the current contract, only the amount of tokens owned by the contract is sent.

COPYRIGHT 2023. KALOS. all rights reserved

25

In this case, the user may receive a small amount of tokens they are entitled to or may not
receive any at all.

Recommendation

To _safeTransfer function, add the following require statement.

We recommend adding the following require statement to the _safeTransfer function. This
ensures that the _safeTransfer function fails when there is insufficient balance in the
MasterchefScomp contract or the amount to be paid is too small.

function _safeTransfer(address _to, uint256 _amount) internal {

if (_amount > 0) {

uint256 balance = TOKEN.balanceOf(address(this));

require(balance>=_amount, "insufficient balance in contract");

TOKEN.safeTransfer(_to, _amount);

}

}

Fix Comment

Implemented the recommendation to add a require statement to the _safeTransfer function to
ensure it fails when there is insufficient balance in the MasterchefScomp contract or the
amount to be paid is too small.

This change was deemed necessary to prevent potential errors and ensure the safety of the
transaction. Confirmed successful implementation of the suggestion.

COPYRIGHT 2023. KALOS. all rights reserved

26

6. minimum output parameter does not exist in Curve
_add_liquidity_single_coin function

ID: StableComp-06 Severity: High
Type: Logic Error Difficulty: Medium
File: contracts/utility/CurveSwapper.sol

Issue
During the process of reinvesting profits received, some profits may be lost.

The code below is problematic.

function harvest() external whenNotPaused returns (uint256) {

...

if (tokenCompoundToDeposit > 0) {

// Add liquidity

_add_liquidity_single_coin(

curvePool.swap,

want,

tokenCompoundAddress,

tokenCompoundToDeposit,

curvePool.tokenCompoundPosition,

curvePool.numElements,

0

);

wantGained = IERC20(want).balanceOf(address(this)).sub(

idleWant

);

}

// Deposit remaining want (including idle want) into strategy position

uint256 wantToDeposited =

IERC20(want).balanceOf(address(this));

if (wantToDeposited > 0) {

_deposit(wantToDeposited);

}

uint256 totalWantAfter = balanceOf();

require(totalWantAfter >= totalWantBefore, "SCompStrategy: want-decreased");

emit Harvest(wantGained, block.number);

return wantGained;

}

...

function _add_liquidity_single_coin(

address swap,

address pool,

address inputToken,

COPYRIGHT 2023. KALOS. all rights reserved

27

uint256 inputAmount,

uint256 inputPosition,

uint256 numPoolElements,

uint256 min_mint_amount

) internal {

_safeApproveHelper(inputToken, swap, inputAmount);

if (numPoolElements == 2) {

uint256[2] memory convertedAmounts;

convertedAmounts[inputPosition] = inputAmount;

ICurveFi(swap).add_liquidity(convertedAmounts, min_mint_amount);

} else if (numPoolElements == 3) {

uint256[3] memory convertedAmounts;

convertedAmounts[inputPosition] = inputAmount;

ICurveFi(swap).add_liquidity(convertedAmounts, min_mint_amount);

} else if (numPoolElements == 4) {

uint256[4] memory convertedAmounts;

convertedAmounts[inputPosition] = inputAmount;

ICurveFi(swap).add_liquidity(convertedAmounts, min_mint_amount);

} else {

revert("Bad numPoolElements");

}

}

https://github.com/stablecomp/stablecomp-contracts/blob/f5bb17e595a1320f3f107b039653f6d384c5ed45/contracts/ut

ility/CurveSwapper.sol

If the minimum output is set, it is safe from sandwich trading via MEV.

However, since the minimum output is not set, the contract may lose a portion of the interest
income.

Recommendation

We recommend calculating the minimum output off-chain, passing it as a parameter to the
harvest and _add_liquidity_single_coin functions, and ultimately setting the parameter
related to minimum output of _add_liquidity_single_coin.

Fix Comment

We recommended calculating the minimum output using the get_virtual_price function within
the curve.fi contract. However, for certain LP tokens, the get_virtual_price function was not
available, so the contract was ultimately patched to use the lp_price function instead.

COPYRIGHT 2023. KALOS. all rights reserved

28

DISCLAIMER

This report does not guarantee investment advice, the suitability of the business
models, and codes that are secure without bugs. This report shall only be used to
discuss known technical issues. Other than the issues described in this report,
undiscovered issues may exist such as defects on the main network. In order to write
secure codes, correction of discovered problems and sufficient testing thereof are
required.

COPYRIGHT 2023. KALOS. all rights reserved

29

Appendix. A

Severity Level

CRITICAL Must be addressed as a vulnerability that has the potential to seize or
freeze substantial sums of money.

HIGH Has to be fixed since it has the potential to deny users compensation or
momentarily freeze assets.

MEDIUM Vulnerabilities that could halt services, such as DoS and Out-of-Gas,
need to be addressed.

LOW Issues that do not comply with standards or return incorrect values

TIPS Tips that makes the code more usable or efficient when modified

Difficulty Level

Low Medium High

Privilege anyone Miner/Block Proposer Admin/Owner

Capital needed Small or none Gas fee or volatile as
price change

More than exploited
amount

Probability 100% Depend on environment Hard as mining difficulty

COPYRIGHT 2023. KALOS. all rights reserved

30

Vulnerability Category

Arithmetic
• Integer under/overflow vulnerability
• floating point and rounding accuracy

Access & Privilege
Control

• Manager functions for emergency handle
• Crucial function and data access
• Count of calling important task, contract state change, intentional task delay

Denial of Service
• Unexpected revert handling
• Gas limit excess due to unpredictable implementation

Miner Manipulation
• Dependency on the block number or timestamp.
• Frontrunning

Reentrancy
•Proper use of Check-Effect-Interact pattern.
•Prevention of state change after external call
• Error handling and logging.

Low-level Call
• Code injection using delegatecall
• Inappropriate use of assembly code

Off-standard • Deviate from standards that can be an obstacle of interoperability.

Input Validation • Lack of validation on inputs.

Logic Error/Bug • Unintended execution leads to error.

Documentation •Coherency between the documented spec and implementation

Visibility • Variable and function visibility setting

Incorrect Interface • Contract interface is properly implemented on code.

COPYRIGHT 2023. KALOS. all rights reserved

31

End of Document

COPYRIGHT 2023. KALOS. all rights reserved

